## Math 3303 Final Exam

## Question 114 points

Describe two partitions: the first one on all the natural numbers and the second one on all the real numbers. Tell why your description is a partition on the relevant set.

## Question 212 points

Illustrate the theorem at least twice:
The square of any integer is in [0] or [1] mod 3 and not [2] mod 3 .

## Question 320 points

Short Answers needed:
3A Given that $f(x)=\frac{x}{x-3}$ is one-to-one. What is $f^{-1}$ ?

3B Given $f(x)=x^{2}+3$ and $g(x)=2 x+1$. What is $g \circ f(3)$ ?

3C Is the set of all one-to-one functions with the operation composition a group? Support your answer with function facts.

3D Given an example of a relation on two sets that is NOT a function. Explain why it is not.

## Question 414 points

Why is the set of natural numbers $\bmod 5$ a group with the operation addition? Sketch a Cayley Table and give your explanation in agonizing detail.

## Question 520 points

Given this set of numbers: $\left\{\frac{\pi}{2}, \sqrt{7},-1+i, 6,2\right\}$
Write each number below and pick the adjectives from the list below that apply to them:
Abundant, Algebraic, Complex, Composite, Deficient, Irrational, Perfect, Prime, Quaternion, Rational, Transcendental

## Question 610 points

Illustrate the theorem:

If $n$ is an integer, not divisible by 2 or 3 , then $n^{2}+23$ is divisible by 24 .

## Extra Credit Question 5 points

If $a c \equiv_{m} b c$ then $a \equiv_{m / d} b$ where $d=(c, m) . a, b, c$, and $d$ are natural numbers, $d$ is greater than 1 and both $m$ and $c$ are multiples of $d$.

